Search results

Search for "AAO template" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Modulated critical currents of spin-transfer torque-induced resistance changes in NiCu/Cu multilayered nanowires

  • Mengqi Fu,
  • Roman Hartmann,
  • Julian Braun,
  • Sergej Andreev,
  • Torsten Pietsch and
  • Elke Scheer

Beilstein J. Nanotechnol. 2024, 15, 360–366, doi:10.3762/bjnano.15.32

Graphical Abstract
  • oscillatory manner by the magnetic field in the nanowire-based devices. We present a toy model to qualitatively explain these observations. Keywords: AAO template; critical current; multilayered magnetic nanowires; spin-transfer torque; three-dimensional devices; Introduction Spin-transfer torque (STT) has
  • aluminum oxide (AAO) template-assisted electrodeposition has attracted wide interest because of its low cost as well as high flexibility on tailoring the magnetic properties of magnetic systems and thus STT effects [8][9][10][11][12]. Moreover, it enables a larger number of free layers, whose magnetization
  • Discussion The AAO template was fabricated by directly anodizing a ca. 1 µm thick aluminum (Al) film on a silicon (Si) substrate covered with 200 nm SiO2 and patterned Ti/Au (5/50 nm) bottom electrodes. It has pores with a diameter of around 35 nm, an interpore distance of around 50 nm, and a height of
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • same time, only a minor part of nanowires is known to grow through the whole thickness of a template when potentiostatic electrodeposition is used [22][23][24][25]. Not only electrodeposition conditions but also thickness and structural defects in the AAO template influence the completeness of the
  • formation of a short (up to 1 µm) Cu segment, which governed the recess of NEAs relative to the surface of the AAO template. At the second stage (Figure 1b), a short (up to several micrometers) Au segment was electrodeposited above the Cu segment. Further, these Au segments will serve as an electroactive
  • segment were selectively etched away after turning the AAO template upside down (Figure 1d). Segment 1 – copper Optimization of the deposition potential (Ed) for the formation of the first Cu segment was performed in the range from −0.1 to −0.5 V. In the case of more negative potentials, an intensive
PDF
Album
Full Research Paper
Published 30 Aug 2021

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • . [42] used a nanoporous template of AAO as a SERS substrate, and varied the thickness of either the Au film or the AAO itself. An enhancement factor of 107 was obtained with an Au thickness of 20 nm and an AAO thickness of 100 nm. Using an AAO template, Aflatoxin B1 (AFB1) from peanut extract was
PDF
Album
Full Research Paper
Published 16 Oct 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • solar energy harvesting in photovoltaic and photocatalytic applications owing to their extremely high visible-light absorption and tuned effective band gap. In this work, Ag-loaded TiO2 nanocolumn (Ag-TNC) arrays were fabricated based on anodic aluminum oxide (AAO) template by combining atomic layer
  • then subjected to a second oxidation treatment under the same conditions as the first oxidation step. After an oxidation time of 60 s, a single-pass AAO template with a pore diameter of 40 nm, a pore pitch of 65 nm, and a pore depth of 150 nm was obtained. Ag-TNC array preparation: An array of TiO2
  • nanocolumns was deposited (300 cycles) on the AAO template using ALD (home-built) with TiCl4 as the precursor. The preparation of Ag-filled TiO2 nanocolumns (AFT) was as follows: A sample deposited with TiO2 was placed in a vacuum evaporation apparatus (Shen Yang, LN-1004A) and subjected to Ag deposition at a
PDF
Album
Full Research Paper
Published 05 May 2020

An iridescent film of porous anodic aluminum oxide with alternatingly electrodeposited Cu and SiO2 nanoparticles

  • Menglei Chang,
  • Huawen Hu,
  • Haiyan Quan,
  • Hongyang Wei,
  • Zhangyi Xiong,
  • Jiacong Lu,
  • Pin Luo,
  • Yaoheng Liang,
  • Jianzhen Ou and
  • Dongchu Chen

Beilstein J. Nanotechnol. 2019, 10, 735–745, doi:10.3762/bjnano.10.73

Graphical Abstract
  • angles led to a variation of the structural color from red to blue-purple, and the SiO2 particle size was also found to have an influence on the film color [14]. Furthermore, an AAO template was firstly prepared in an electrolyte with an alkaline silica gel and phosphate, onto which a layer of an Au film
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

Determination of Young’s modulus of Sb2S3 nanowires by in situ resonance and bending methods

  • Liga Jasulaneca,
  • Raimonds Meija,
  • Alexander I. Livshits,
  • Juris Prikulis,
  • Subhajit Biswas,
  • Justin D. Holmes and
  • Donats Erts

Beilstein J. Nanotechnol. 2016, 7, 278–283, doi:10.3762/bjnano.7.25

Graphical Abstract
  • removing outgrown NWs from the surface of the AAO template. Alternatively NWs from dissolved AAO templates were also used for mechanical testing. In this case filled AAO templates with NW diameters ranging from 80 to 200 nm were polished, dissolved in 9% H3PO4, washed and dried. The as-prepared Sb2S3 NW
PDF
Album
Full Research Paper
Published 19 Feb 2016

Filling of carbon nanotubes and nanofibres

  • Reece D. Gately and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2015, 6, 508–516, doi:10.3762/bjnano.6.53

Graphical Abstract
  • gold electrodes [72]. This was shown to not only decorate the external surface, but also to fill some MWCNTs with a gold nanowire. Ordered, open MWCNTs produced from the AAO template method have also undergone an electrochemical filling process with nickel–iron alloys [73]. It was shown that this
  • ). Next, standard arc discharge methods were utilised (25–35 V, 100 A). This method produced filled MWCNTs, as well as filled, graphitic nanoparticles. This method has been employed in conjunction with an AAO template lined with the filler material [114] or completely filled with the metal [115]. Moreover
PDF
Album
Review
Published 19 Feb 2015

3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

  • Loïc Assaud,
  • Evans Monyoncho,
  • Kristina Pitzschel,
  • Anis Allagui,
  • Matthieu Petit,
  • Margrit Hanbücken,
  • Elena A. Baranova and
  • Lionel Santinacci

Beilstein J. Nanotechnol. 2014, 5, 162–172, doi:10.3762/bjnano.5.16

Graphical Abstract
  • nanotubes can be observed. The NiO layer covers the AAO template homogeneously. Note that no gradient of NiO loading is observed in the deep section of the template. The quantity of matter is identical at the top and the at the bottom of the pores. This is attributed to the self-limiting process of the ALD
  • . A typical AAO template is shown in Figure 14. The Pd/Ni catalysts have been prepared by ALD in a Fiji 200 reactor from Ultratech/Cambridge Nanotech. The catalysts (Ni and Pd) were deposited both on AAO membranes and on flat Si(100) wafers that were cleaned beforehand by sonication in acetone
  • backscattering electron mode) showing NiO grown by ALD within the AAO template. The NiO top layer has been removed by a short Ar sputtering in order to reveal the NiO film coating the vertical pore walls. The NiO deposit is emphasized on the picture using a red overlay. (a) TEM image of NiO nanotubes after
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2014
Other Beilstein-Institut Open Science Activities